Clinical Forecasting:
A Novel Bayesian Tool for Predicting Phase III Outcomes

By Asher D. Schachter, MD
(Children’s Hospital Informatics Program and Division of Nephrology, Boston, MA; Assistant Professor of Pediatrics, Harvard Medical School; CSO, Phorecaster, LLC)

In recent years, there has been an explosion in predictive technologies to help researchers select only the most promising candidates for clinical development. The need for such tools is driven by the disastrous economic consequences of late-stage failures, which account for over 60% of all drug terminations. This report describes a powerful and novel predictive tool called Bayesian network modeling and demonstrates its application in clinical forecasting. Among its many potential benefits, clinical forecasting can:

- Reduce drug development costs
- Increase median cumulative 7-year revenue per Phase III trial
- Redirect capital and human resources to development programs with the greatest likelihood of success
- Expose clinical trial subjects to fewer unsafe or ineffective drugs
- Improve the accuracy and decision-making utility of market forecasts (which currently assume that all drugs in the projection period will achieve NDA approval)
- Increase industry’s and society’s confidence in including pediatric subjects in clinical trials

continued…
Moreover, unlike existing predictive technologies such as microdosing, toxicogenomics, or ultra high-throughput screening (HTS), all of which entail significant costs in capital equipment, training, and ongoing maintenance, clinical forecasting based on Bayesian statistics is comparatively inexpensive.

Clinical Forecasting: A Novel Bayesian Tool for Predicting Phase III Outcomes begins by summarizing existing predictive technologies with particular reference to their limitations. Gene expression arrays, while providing useful prognostic information, are limited by the lability of mRNA and inconsistencies across microarray platforms. Population pharmacokinetics suffers from the many different variables between patients within a population, which can often confound the results. Microdosing is disadvantaged by limited databases required for the studies, unclear regulatory guidelines, and, in the case of PET studies, short trace half-lives and limited ability to distinguish between the compound and its metabolites.

With complete transparency as to data sources and assumptions, the author shows how the Bayesian network model predicted outcomes (new drug approval or failure) based on an independent dataset of 503 new chemical entities (NCEs) with an optimal accuracy of 78%. The author emphasizes that, with more complete and historical datasets of in vivo and in vitro compound data including therapeutic index ranges, the model’s performance can be even further improved.

In fact, Bayesian clinical forecasting will supplement other predictive technologies to boost the confidence of decision makers in R&D. The ultimate goal is to incorporate into the model compound-specific data as well as emerging information such as pharmacogenomic and single nucleotide polymorphism data, and new data from novel HTS screens.

The author includes a retrospective case study demonstrating the application of Bayesian clinical forecasting to Eli Lilly’s Xigris (recombinant human activated protein C), a failed drug for sepsis. Based on public in vivo animal data and early Phase II human data, the model predicted that Xigris had a very low probability of clinical success.

The report concludes with an evaluation of the model’s economic impact based on a Monte Carlo simulation. The model was found to significantly reduce median expenditures per successful NCE by 39% below the industry average. Even more impressively, the model significantly increased median cumulative 7-year revenues per Phase III trial by $160 million above pharmaceutical industry revenues — from $347 million to $507 million.

The real lessons of this fascinating exercise in clinical forecasting are that (1) there is considerable hidden value in the low-hanging fruit of terminating would-be late-stage failures. The author’s conversations with pharma R&D managers suggest that industry is more focused on earlier preclinical decision making. While it is true that predictive modeling at the target selection and lead identification/validation stages can have a greater impact on productivity, the termination of potential late-stage failures can provide significant additional benefits. The other lesson (2) is the urgent need for industrywide sharing of data in order to improve the accuracy of predictive models and thus the ROI of pharmaceutical R&D.

Biostatisticians and decision analysts, portfolio managers, market forecasters, business development managers, and decision makers throughout the R&D organization will benefit from this report.
Tables and Figures

Tables
- Advantages of Zebrafish in Drug Development
- Impact of 78%-Accurate Clinical Forecasting on Public Companies

Figures
- Example of a Pharmacokinetic Profile
- Role of Bayesian Networks in Phase IV
- Clinical Variables Believed Most Crucial to NCE Clinical Success

Table of Contents

Section 1: Existing Predictive Tools for Pharmaceutical Forecasting
- **Biological Tools**
 - Biomarker and Target Discovery via High-Throughput Genomics and Proteomics
 - Bioinformatics: High-Throughput Biomarker and Target Discovery
 - In Silico Drug Discovery with the Connectivity Map
 - Pharmacogenetics and Pharmacogenomics
 - High-Throughput Screens and Animal Models
- **Clinical Tools**
 - Therapeutic Index
 - Pharmacokinetics
 - Population Pharmacokinetics
 - Pharmacokinetic Models
 - Microdosing
 - Phase IV Postmarketing Surveillance
- **Bayesian Market Forecasting and Modeling of Cost-Effectiveness in Drug Development**

Section 2: Description of a Bayesian Clinical Forecasting Model
- Application of a Bayesian Network to Clinical Forecasting in Drug Development
- Prior Probability of NCE Success and Failure
- Conditional Probability Tables
- Training Dataset from Tufts CSDD Sources
- Independent Dataset Construction
- Model Evaluation Shows 78%-Accurate Prediction of NCE Success on Independent Dataset

Section 3: Case Study: Recombinant Human Activated Protein C, Eli Lilly’s Xigris
- Data Used For Forecast
- Model Predicts Xigris Has Low Probabilities of Clinical Success, Safety and Efficacy

Section 4: Economic Impact of Bayesian Clinical Forecasting
- Pharmacoeconomic Evaluation
- Monte Carlo Simulation to Determine Expenditures and Revenues for BN Model and for Pharmaceutical Industry
- Model Reduced Median Expenditures, Increased Median Cumulative 7-Year Revenues
- Harnessing the Power of Late-stage Failure Data and of Industrywide Data Sharing
- Data Storage Issues: Paper vs. Digital

Section 5: Societal Impact of Bayesian Clinical Forecasting
- Impact on Children
- Impact on the Elderly

Appendix A: Brief Overview of Bayesian Networks

Appendix B: Glossary

References

About the Author: Asher D. Schachter, MD, is a pediatric nephrologist and bioinformatician at Children’s Hospital Boston and the Children’s Hospital Informatics Program. Upon completion of his nephrology fellowship at Children’s Hospital Boston, Dr. Schachter pursued 2 sequential masters degrees at the Harvard-MIT Division of Health Sciences and Technology: a masters of medical science in clinical investigation and drug development and a masters of science in biomedical informatics. Dr. Schachter’s thesis focused on novel approaches for applying Bayesian networks to predictive modeling in drug development. In 2003, Dr. Schachter was appointed as a faculty member of the Children’s Hospital Informatics Program, and as an assistant professor of pediatrics at Harvard Medical School. Dr. Schachter cofounded Phorecaster, LLC in 2006, with Marco Ramoni, PhD, and is Phorecaster’s chief scientific officer.

CHI’s Insight Pharma Reports’ Tech Updates focus on fast moving technologies for pharmaceutical R&D. We have made these reports available in electronic PDF format for easy distribution and text searching. Tech Update reports are high-value, cost-effective solutions to the business information needs of busy life science decision-makers.
Outlook for Predictive Safety Technologies delivers a comparative assessment of the leading predictive safety technologies, with an emphasis on performance, specific applications in non-clinical testing, and total cost of ownership. You will also see estimates of potential savings in research costs and animal use—including a case study scenario of cost savings for a mid-sized biopharma company and estimates of safety-related compound discontinuation rates. The report discusses adoption rates by industry—which technologies are attracting resources, and why. Included is a quantitative survey (N=46) of the views, practices, and plans of ADME/Tox researchers in industry and academia presented in easy-to-scan charts.

Clinical Forecasting: A Novel Bayesian Tool for Predicting Phase III Outcomes

CHI Insight Pharma Reports are written by experts who collaborate with CHI to provide a series of reports that evaluate the salient trends in pharmaceutical technology, business, and therapy markets.

Insight Pharma Reports are used by senior decision makers at life science companies to keep abreast of the latest advances in pharmaceutical R&D, their potential applications and business impacts, and their current and future position in the marketplace. Our regular clients include the top 50 pharmaceutical companies, top 100 biotechnology companies, and top 100 vendors of life science products and services. Typical purchasers are managers, directors, and VPs in business development, discovery research, clinical development, strategic planning, portfolio management, new product planning, and marketing.

Insight Pharma Reports offer:
- Current information and analysis of R&D technologies, therapeutic markets, and critical business issues.
- Analysis of the probability of success for various applications of each technology.
- Expert insight based on interviews with key personnel in companies at the forefront of technological advances. These experts share their views on their technology’s current status, applications in drug development or diagnostics, future direction, and the general market environment.
- Competitive insight into the business strategies and activities of key companies.

To view a table of contents and executive summary, please visit www.InsightPharmaReports.com

TO ORDER:
- Web: www.InsightPharmaReports.com
- Phone: 781-972-5444
- Fax: 981-972-5425
- E-mail: rllaia@healthtech.com
- Mail: Rose LaRaia
 250 First Avenue, Suite 300
 Needham, MA 02494