Blood-Brain Barrier: Bridging Options for Drug Discovery and Development

By Allan B. Haberman, PhD

• Strategies to develop small- and large-molecule CNS drugs capable of crossing the blood-brain barrier (BBB)

• Interviews with leading researchers who are aggressively tackling the BBB challenge in CNS drug discovery and development

• Analysis of results from a Blood-Brain Barrier Survey, responded to by a range of companies involved in CNS research and drug discovery/development

Continued on next page
CNS diseases are a major focus of the pharmaceutical industry, with CNS drugs representing some of its most successful products. These include Pfizer’s Zoloft (sertraline, for treatment of depression and certain types of anxiety disorders), Lilly’s Cymbalta (duloxetine, for treatment of depression) and Bristol-Myers Squibb’s/Otsuka’s Abilify (aripiprazole, for treatment of bipolar disorder and schizophrenia). However, drug discovery and development researchers experience difficulty developing CNS drugs that complete clinical trials and win regulatory approval—especially drugs which meet major unmet needs in the CNS area, such as Alzheimer’s disease. The vast majority of drugs fail to cross the BBB, which is causing a major bottleneck in successful development of CNS drug candidates.

This report reviews the discovery, design and development of small- and large-molecule drugs that can efficiently cross the BBB. This includes more traditional, medicinal chemistry-based methods, as well as approaches that exploit carrier-mediated transport (CMT) and receptor-mediated transport (RMT). Also covered in the report is use of nanoparticle technology to enable BBB penetration. Further, the report presents in vitro and in vivo assays as well as imaging methods to ascertain a drug’s ability to cross the BBB and reach its target.

Blood Brain Barrier: Bridging Options for Drug Discovery and Development includes results of a survey of researchers and executives—from corporate and academic organizations—who are active in the CNS drug development area. The survey explores their involvement in BBB-related technologies and programs. The survey results are discussed in terms of what they reveal about the current state of BBB research and the future potential for developing drugs that are able to cross it.

Tables and Figures

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS Conditions Not Treatable With Current Drugs</td>
<td>CNS-Penetrant Drugs</td>
</tr>
<tr>
<td>“Rule of Five” for Oral Drugs vs. Rules for CNS-Penetrant Drugs</td>
<td>Substances Subject to P-gp Efflux from the Brain</td>
</tr>
<tr>
<td>Selected Receptor-Mediated Transport Systems Used for Development of Large-Molecule Drugs That Can Cross the BBB</td>
<td>ArmaGen’s Pipeline of Large-Molecule Drugs Based on Molecular Trojan Horse (MTH) Technology</td>
</tr>
</tbody>
</table>

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure of Brain Endothelium</td>
<td>Role of SLC and ABC Transporters in Active Efflux of Drugs across the BBB</td>
</tr>
<tr>
<td>Structures of L-DOPA and Dopamine Co-Culture In Vitro Model of the BBB</td>
<td>Appendix Figures</td>
</tr>
</tbody>
</table>

Appendix Figures

Please classify your organization under what functional role do your responsibilities fall?

What is your title?

Please indicate the product area/areas that your organization is pursuing for CNS drugs.

Has your involvement in CNS drugs changed over the past 4 years?

If your involvement has increased, in what aspect(s)?

If your involvement has increased, in which therapeutic areas?

How many CNS drugs do you expect to launch in 2008 or 2009?

How many CNS drugs do you have in the preclinical to preregistration pipeline?

Which indications do your pipeline drugs attempt to address?

What do you see as the biggest bottleneck in successful development of your CNS drugs?
Chapter 1: The Blood-Brain Barrier: A Challenge for CNS Drug Development
1.1. Introduction to the BBB Bottleneck
1.2. Dearth of Drugs for CNS Diseases with High Unmet Need
 Parkinson’s Disease
 Multiple Sclerosis
1.3. New Approaches Needed to Overcome the BBB Hurdle
 Tempting New CNS Targets…
 …Belie an Underserved CNS Drug Market

Chapter 2: Physiology of the Blood-Brain Barrier
2.1. Specialized Brain Capillaries Present Barriers to Diffusion
2.2. Transcranial Delivery of Drugs to Bypass the BBB

Chapter 3: Discovery and Design of Small-Molecule Drugs that Can Cross the Blood-Brain Barrier
3.1. Crossing the BBB via Passive Diffusion across the Brain Endothelium
 The “Rule of Five” for Determining “Drug-Like” Properties
3.2. Action of Efflux Transporters in Inhibiting BBB Penetration
 P-Glycoprotein (P-gp)
 Studies of Pgp Polymorphisms in Humans
 Discovery and Design of Drugs That Use Nutrient Transporters to Cross the BBB
 Solute Carrier Transporters in Active Efflux from the BBB
3.3. Design of Small-Molecule Drugs That Use Carrier-Mediated Transport to Cross the BBB
 Companies Involved in Developing Small-Molecule Drugs That Exploit Transporter Biology
 ArmaGen
 XenoPort
3.4. In Vivo Methods for Evaluating Drug Penetration of the BBB
 Traditional In Vivo Methods for Determining BBB Penetration
 In Vivo Methods for Determining BBB Penetration by Use of Imaging
 Positron Emission Tomography (PET)
 Magnetic Resonance Imaging (MRI)
 Functional Magnetic Resonance Imaging (fMRI)
3.5. In Vitro Methods for Determining BBB Penetration
 Cell Culture Models of the BBB
3.6. Use of Nanoparticle Technology to Enable BBB Penetration

Chapter 4: Discovery and Design of Large-Molecule Drugs that Can Cross the Blood-Brain Barrier
4.1. Exploiting Receptor-Mediated Transport in Design of Large-Molecule Drugs That Cross the BBB
 Molecular Trojan Horses
4.2. Use of a Diphtheria Toxin Mimetic as a Molecular Trojan Horse for BBB Transport
4.3. Use of a Neurotropic Virus Glycoprotein Mimetic as a Molecular Trojan Horse for BBB Transport
4.4. Need for Basic Research to Find Additional Receptors That Can Be Exploited to Get Large-Molecule Drugs across the BBB
 Genomics and Proteomics Research Aimed at Discovery of Novel BBB Transporters

Chapter 5: Outlook for Meeting the Challenge of the Blood-Brain Barrier in Drug Discovery and Development
5.1. Blood-Brain Barrier Survey Results
5.2. Conclusions

Chapter 6: Expert Interviews
Pieter J. Gaillard, PhD, Founder & Chief Executive Officer, to-BBB, Leiden, The Netherlands
William M. Pardridge, MD, Chairman & Chief Scientific Officer, ArmaGen Technologies, Santa Monica, CA
Christopher L. Shaffer, PhD, Senior Principal Scientist, Neuroscience; Pharmacokinetics, Pharmacodynamics and Metabolism, Pfizer, Groton, CT
Noa Zerangue, PhD, Research Director, XenoPort, Santa Clara, CA

Chapter 7: Selected Company Profiles
Amgen
Cellial Technologies
GlaxoSmithKline
Merck & Co.
MethylGene
Pfizer
Wyeth
XenoPort

Appendix: Insight Pharma Reports Blood-Brain Barrier Survey

References

Company Index with Web Addresses
Potential Breakthroughs in Neurotherapeutics: Alzheimer's Disease, Parkinson's Disease, Depression, Bipolar Disorder, and Schizophrenia

This report provides a comprehensive assessment of truly innovative, early-stage research that we feel will translate into significant advances in neurotherapy. Specifically, it:

- Surveys current basic research relevant to drug or target discovery
- Highlights projects that show promise of future commercial potential
- Examines conditions in the technology transfer milieu relevant to these emerging opportunities
- Assesses the commercial potential for these emerging opportunities using a proprietary rating system
- Probes the views of authorities in industry and academia with insight into neurotherapeutic R&D

It begins with an analysis of the technology transfer process which bridges university research and the commercial world—its triumphs, but also its difficulties operating in the current risk-averse commercial environment.

For each of the 6 diseases, this report reviews consensus thinking about the pathophysiological mechanisms, targets, and the state-of-the-art in drug therapy. Then it launches into a review of significant research findings in each disease—the compounds and their targets already in discovery or early development with potential therapeutic value. It contains interviews with 8 thought leaders in neurotherapeutics from industry and academia, plus profiles of 20 companies at the forefront of CNS R&D.

To view a table of contents and executive summary, please visit www.InsightPharmaReports.com

Blood-Brain Barrier: Bridging Options for Drug Discovery and Development

A TECH UPDATE

Potential Breakthroughs in Neurotherapeutics—Oct. 2006 (198 pp) $2,250.00

Purchase both reports and receive a 10% discount

$3,500.00

$2,250.00

Total: $3,500.00

Call for global license pricing; contact David Cunningham at 781-972-5472 or cunningham@healthtech.com

Choose a payment option:

1. ☐ Enclosed is a check order payable to Cambridge Healthtech Publishing, in U.S. currency. (In Massachusetts, add 5% sales tax.)
2. ☐ Purchase order number ______________________________
3. ☐ Credit card: ☐ Amex ☐ Visa ☐ MC ☐ Diners Club #: ______________________________ Exp. Date: __________ Sec. Code: __________

Cardholder: ______________________________ Signature ______________________________

Mr. ☐ Ms. ☐ Mrs. ☐ Dr. ☐ First Name: ______________________________ Last Name: ______________________________

Job Title: ______________________________ Div./Dept.: ______________________________ Company: ______________________________

Address (please include Mail Stop, Room or Bldg. #): ______________________________

City/State/Postal Code: ______________________________ Country: ______________________________

Telephone: ______________________________ Fax: ______________________________ E-Mail: ______________________________

Please refer to the key code below

TO ORDER:

Web: InsightPharmaReports.com
Phone: 781-972-5444
Fax: 781-972-5425
E-mail: rlarai@healthtech.com
Mail: Rose LaRaia
250 First Avenue, Suite 300
Needham, MA 02494