Immunotherapies and Vaccines for Nontraditional Indications

by Lucy J. Sannes, PhD, MBA

Published in October 2009 by Cambridge Healthtech Institute
Insight Pharma Reports is a division of Cambridge Healthtech Institute, a world leader in life science information and analysis through conferences, research reports, and targeted publications. Insight Pharma Reports focus on pharmaceutical R&D—the technologies, the companies, the markets, and the strategic business impacts. They regularly feature interviews with key opinion leaders; surveys of the activities, views, and plans of individuals in industry and nonprofit research; and substantive assessments of technologies and markets. Managers at the top 50 pharma companies, the top 100 biopharma companies, and the top 50 vendors of tools and services rely on Insight Pharma Reports as a trusted source of balanced and timely information.

Related Reports

Monoclonal Antibodies: Pipeline Analysis and Competitive Assessment

by Mark C. Via

Immunotherapies and Vaccines for Cancer and Infectious Diseases

by Lucy J. Sannes, PhD, MBA

General Manager: Alfred R. Doig, Jr.
781-972-1348, adoig@healthtech.com

Editorial Operations Director: Laurie Sullivan
781-972-1353, lsullivan@healthtech.com

Design Director: Tom Norton
781-972-5440, tnorton@healthtech.com

Production Director: Ann Handy
781-972-5493, ahandy@healthtech.com

Marketing Manager: James Prudhomme
781-972-5486, jprudhomme@healthtech.com

Customer Service: Rose LaRaia
781-972-5444, rlaraia@healthtech.com

Corporate Subscriptions and Global Licenses: David Cunningham
781-972-5472, cunningham@healthtech.com

Insight Pharma Reports, 250 First Ave., Suite 300, Needham, MA 02494
www.InsightPharmaReports.com
Immunotherapies and Vaccines for Nontraditional Indications

by Lucy J. Sannes, PhD, MBA

About the Author

Lucy J. Sannes, PhD, MBA, is president of Sannes & Associates, a consulting firm specializing in evaluation and management of the biosciences. Before forming Sannes & Associates, she held management positions at Genetic Systems and Abbott Laboratories in product development, product support, and technical marketing. Dr. Sannes received her PhD in biological chemistry from the University of Michigan and her MBA from Seattle Pacific University.

For more information about published Insight Pharma Reports, visit www.InsightPharmaReports.com or call Rose LaRaia at 781-972-5444.
Executive Summary

The earliest immunotherapies were vaccines that stimulate the immune system’s response against infectious agents, providing protection against those diseases. Vaccines and immune globulin preparations (passive immunotherapies) have been used for many years to enhance the immune system’s response against infectious diseases. More recently, a number of monoclonal antibodies have been commercialized for treatment of cancer, and a number of active immunotherapies and vaccines that stimulate the immune response against cancer are being developed. These applications of immunotherapy focus on the benefits of the immune system when it is working correctly, and the potential beneficial therapies that may be developed by enhancing the immune response.

In contrast, sometimes a person’s immune system goes awry, either attacking the person’s own body, or overreacting or producing an exaggerated response to a foreign substance that is normally harmless to most people. In these situations, therapies are needed to suppress or modulate the unwanted immune response. Therapies that suppress or modulate the immune response are currently available. More are being developed for treatment of autoimmune diseases, treatment of allergies, or prevention of transplant rejection.

These are the most well-known applications of immunotherapies and vaccines that enhance the immune system. However, many other applications are possible. Research and development of immunotherapies for these other indications has been progressing for many years, even though this effort has not received the public attention that the work on infectious disease and cancer immunotherapies and vaccines has seen. This report discusses many of these other applications of monoclonal antibodies, therapies derived from antibodies, vaccines, and therapies that modulate the immune response for treatment of a wide range of disorders and diseases.
Some of the emerging therapies discussed in this report have been developed for treatment of diseases that are caused by the immune system including inflammatory diseases (diseases resulting from the immune response) and also disorders resulting from changes in the complement system. However, there are also other disorders included in this report that are not immune-mediated diseases or the result of the immune response. For these disorders, antibodies are being used as tools to block targeted proteins that have a role in the disease process. These antibodies may be delivered passively, or they may be generated by the patient’s own body in response to a vaccine.

Chapter 2 discusses the progress in developing immunotherapies and vaccines for treatment of Alzheimer’s disease. Several immunotherapies that target beta amyloid are in development, including both monoclonal antibodies and vaccines. The most advanced is bapineuzumab, which is in Phase III development by Johnson & Johnson and Pfizer (formerly Elan and Wyeth). In this chapter, the pathophysiology, epidemiology, and current therapy of Alzheimer’s disease are discussed. This is followed by a section that discusses why companies are developing antibodies and vaccines for treatment of Alzheimer’s disease. The next section of Chapter 2 discusses many of the emerging immunotherapies for Alzheimer’s disease that have reached clinical development. Even more emerging immunotherapies for this indication are included in a table that accompanies this section. The final section of this chapter discusses business considerations for companies that are developing immunotherapies for treatment of Alzheimer’s disease.

Similar sections are included in each of the subsequent chapters about different disease indications. Chapter 3 discusses immunotherapies that are being developed for treatment of two different addictions: nicotine and cocaine. With these immunotherapies, antibodies are either passively administered or are produced by the patient’s body in response to a vaccine. The antibodies then bind to either nicotine or cocaine, creating a large molecule that cannot be transported across the blood-brain barrier. Immunotherapies are being developed for a wide range of different neurological indications, and several of these additional indications are discussed in Chapter 4 and/or are included in a table of therapies in development that accompanies Chapter 4. These additional neurological conditions include pain, multifocal motor neuropathy, treatment of pain in dental patients undergoing third-molar extraction, treatment of ankylosing spondylitis, rheumatoid arthritis, chronic low back pain, endometriosis, the pain associated with cancer that has metastasized to the bone, blocking a protein that inhibits axonal regeneration (for treatment of stroke), and Parkinson’s disease.
Immunotherapies (including antibodies and vaccines) are also being developed for treatment of different cardiovascular disorders. These are discussed in Chapter 5. The targeted cardiovascular disorders include angina, atherosclerosis, dyslipidemia, hypertension, venous thromboembolism, and digoxin toxicity. Chapter 6 discusses the development and use of immunotherapies for hematological disorders including idiopathic (immune) thrombocytopenic purpura (ITP), paroxysmal nocturnal hemoglobinuria (PNH), and Rh incompatibility and hemolytic disease of the newborn (HDN).

Antibodies can also be used for treatment of ophthalmic diseases. As discussed in Chapter 7, Lucentis (ranibizumab) is an antibody fragment that binds to and inhibits VEGF. It is FDA approved for treatment of neovascular (wet) age-related macular degeneration. It is also in late-stage clinical development for additional ophthalmic indications. A human monoclonal antibody against VEGF, Genentech’s/Roche’s Avastin (bevacizumab), is FDA approved for treatment of colorectal cancer, non-small cell lung cancer, breast cancer, and glioblastoma. While Avastin is not approved for treatment of wet AMD, it is also used for this indication. Other examples of ophthalmic diseases for which antibodies are being developed include diabetic retinopathy and diabetic macular edema, retinal vein occlusion, and uveitis.

Chapter 8 discusses the development of antibodies for treatment of osteoporosis and other bone metabolism disorders. The most advanced of these is Amgen’s denosumab, which is a human monoclonal antibody that targets the receptor activator of nuclear factor kappa beta ligand (RANKL). Denosumab has been submitted to the FDA. Ablynx (Belgium) is developing nanobodies that target RANKL. These are in preclinical development. In addition, Amgen (with UCB Pharma) is also developing Sclerostin Ab, a humanized antibody that targets the protein sclerostin.

In addition, multiple monoclonal antibodies are being developed for treatment of type 2 diabetes. Three companies are developing antibodies that target IL-1 beta, a pro-inflammatory cytokine that stimulates the immune response. The second molecule being targeted by a monoclonal antibody in development for type 2 diabetes is the glucagon receptor. These are discussed in Chapter 9.

In addition to all of these activities in neurology, cardiovascular disease, hematology, ophthalmology, osteoporosis, and type 2 diabetes, many additional antibodies, antibody-based drugs, and other immunotherapies/anti-inflammatory drugs are being developed to treat a
wide range of indications. Several examples of those that have reached clinical development are discussed in Chapter 10, and even more are included in the table that accompanies Chapter 10.

This report also includes seven interviews with experts in the application of antibodies, antibody-derived therapies, and vaccines to the treatment of various diseases included in this study. These experts discuss the progress, challenges, and hurdles faced by researchers and companies working in this field.
Table of Contents

CHAPTER 1
INTRODUCTION ... 1
1.1. The Immune System ... 4
1.2. Scope of the Report .. 5

CHAPTER 2
ALZHEIMER’S DISEASE ... 7
2.1. Alzheimer’s Disease Pathophysiology, Epidemiology, and Current Treatments ... 7
2.2. Why Immunotherapies or Vaccines for Treatment of Alzheimer’s Disease? 10
2.3. Companies Developing Immunotherapies or Vaccines for Alzheimer’s Disease. 12
 AFFiRiS’ AFFITOPE AD01 and AFFITOPE AD02 ... 18
 Baxter’s GAMMAGARD .. 19
 Novartis’ and Cytos Biotechnology’s CAD106 .. 20
 Eli Lilly’s LY2062430 .. 21
 Genentech’s and AC Immune’s Anti-Abeta ... 22
 GlaxoSmithKline’s GSK933776A ... 22
 JANSSEN Alzheimer Immunotherapy’s (Part of Johnson & Johnson) and
 Pfizer’s Bapineuzumab ... 22
 Merck & Co.’s V950 .. 26
 Octapharma’s Octagam ... 26
 Pfizer’s PF-4360365 ... 26
 Roche’s and MorphoSys’ RG1450 ... 27
2.4. Business Considerations: Immunotherapies for Alzheimer’s Disease 28

CHAPTER 3
ADDICTION .. 31
3.1. Pathophysiology, Epidemiology, and Current Treatments 31
 Cocaine Addiction ... 31
 Nicotine Addiction (Smoking Cessation) .. 32
3.2. Why Immunotherapies for Addiction? ... 35
3.3. Companies Developing Immunotherapies for Cocaine Addiction or Smoking Cessation ... 36
 Cocaine Addiction ... 38
 Celtic Pharma’s TA-CD .. 38
 Nicotine Addiction (Smoking Cessation) ... 39
 Celtic Pharma’s TA-NIC .. 39
 Nabi Biopharmaceuticals’ NicVAX .. 40
 Novartis’ and Cytos Biotechnology’s NIC002 .. 43

3.4. Business Considerations: Immunotherapies for Cocaine Addiction or Smoking Cessation ... 44

CHAPTER 4
OTHER NEUROLOGY INDICATIONS OF MONOCLONAL ANTIBODIES AND IMMUNOTHERAPIES ... 47
4.1. Pathophysiology, Epidemiology, and Current Treatment 47
 Multifocal Motor Neuropathy .. 47
 Pain ... 48
 Post-Polio Syndrome .. 57
 Other Potential Neurology Indications ... 58

4.2. Why Immunotherapies for Treatment of Pain? ... 59

4.3. Companies Developing or Marketing Immunotherapies for Other Neurological Indications .. 63
 Alexion Pharmaceuticals’ Soliris (eculizumab) ... 63
 Array BioPharma’s ARRY-797 ... 64
 Baxter’s Immune Globulin ... 65
 CSL Behring’s Immune Globulin ... 65
 GlaxoSmithKline’s 249320 (GSK249320) .. 66
 Pfizer’s Tanezumab .. 66
 Pharmalink’s Xepol (XP-28) .. 67
 Talecris Biotherapeutics’ Gamunex ... 68

4.4. Business Considerations: Immunotherapies for Other Neurological Indications .. 68

CHAPTER 5
CARDIOVASCULAR DISEASES INCLUDING THROMBOSIS 71
5.1. Pathophysiology, Epidemiology, and Current Treatment 71
 Angina .. 71
 Atherosclerosis .. 72
 Dyslipidemia (Elevated Cholesterol and Other Lipids) 73
 Hypertension .. 75
 Venous Thromboembolism .. 76
 Digoxin Toxicity .. 77

5.2. Why Immunotherapies for Selected Cardiovascular Diseases? 88

5.3. Companies Developing Immunotherapies for Cardiovascular Diseases 90
 Ablynx’ ALX-0081 and ALX-0681 ... 90
 BTG’s DigiFab ... 91
 BTG’s Angiotensin Therapeutic Vaccine ... 91
Centocor Ortho Biotech’s and Eli Lilly’s ReoPro (abciximab) 92
Cytos Biotechnology’s CYT006-AngQb .. 92
Genentech’s and BioInvent International’s Anti-oxLDL (BI-204) 94
GlaxoSmithKline’s Digibind .. 94
Roche’s and Genmab’s RG1512 .. 94
ThromboGenics’ and BioInvent International’s TB-402 94

5.4. Business Considerations: Immunotherapies for Cardiovascular Diseases 98

CHAPTER 6
HEMATOLOGY/BLOOD DISORDERS ... 101

6.1. Pathophysiology, Epidemiology, and Current Treatments 101
Idiopathic (Immune) Thrombocytopenic Purpura (ITP) 101
Paroxysmal Nocturnal Hemoglobinuria (PNH) 106
Rh Incompatibility and Hemolytic Disease of the Newborn (HDN) . 107

6.2. Why Immunotherapies for Selected Hematology/Blood Disorders? 108

6.3. Companies Developing or Marketing Immunotherapies for
Hematology/Blood Disorders ... 109
Amgen’s Nplate (romiplostim) ... 113
Immune Globulin Preparations for Idiopathic (Immune)
Thrombocytopenic Purpura (ITP) ... 114
Rho(D) Immune Globulin Preparations and LFB’s Anti-Rhesus D
Monoclonal Antibody .. 114

6.4. Business Considerations: Immunotherapies for Hematology/
Blood Disorders ... 115

CHAPTER 7
OPHTHALMOLOGY .. 117

7.1. Pathophysiology, Epidemiology, and Current Treatments 117
Age-Related Macular Degeneration (AMD) 117
Diabetic Retinopathy and Diabetic Macular Edema 121
Retinal Vein Occlusion .. 122
Uveitis .. 122

7.2. Why Antibody-Based Therapies for Selected Ophthalmic Diseases? 122

7.3. Companies Developing Antibody-Based Therapies for Ophthalmic Diseases ... 123
ESBATech’s ESBA105 .. 125
Genentech’s and Novartis’ Lucentis (ranibizumab) 125
Lpath’s iSONEP (sonepcizumab) ... 127

7.4. Business Considerations: Antibody-Based Therapies for Ophthalmic Diseases 128

CHAPTER 8
OSTEOPOROSIS AND OTHER BONE METABOLISM DISORDERS 129

8.1. Pathophysiology, Epidemiology, and Current Treatments 129
8.2. Why Antibodies for Selected Bone Metabolism Diseases? 134
8.3. Companies Developing Antibodies for Osteoporosis and Other Bone Metabolism Disorders
 Ablynx’ ALX-0141 .. 135
 Amgen’s Prolia (denosumab) .. 136
 Amgen’s and UCB Pharma’s Sclerostin Ab 138

8.4. Business Considerations: Antibodies for Osteoporosis and Other Bone Metabolism Disorders ... 139

CHAPTER 9
TYPE 2 DIABETES ... 141
9.1. Pathophysiology, Epidemiology, and Current Treatments 141
9.2. Why Monoclonal Antibodies for Type 2 Diabetes? 145
9.3. Companies Developing Monoclonal Antibodies for Type 2 Diabetes 146
 Amgen’s AMG 477 .. 148
 Cytos Biotechnology’s CYT013-IL1bQb 148
 Novartis’ Ilaris (canakinumab) ... 149
 Xoma’s XOMA 052 .. 149
9.4. Business Considerations: Monoclonal Antibodies for Type 2 Diabetes ... 150

CHAPTER 10
OTHER APPLICATIONS OF ANTIBODIES AND IMMUNOTHERAPIES .. 153
10.1. Companies Developing Antibodies, Antibody-Based Drugs, and Anti-inflammatory Drugs for Other Indications 153
 Drugs for Selected Other Indications .. 153
 Amgen’s AMG 745 .. 157
 AstraZeneca’s and BTG’s CytoFab ... 158
 BTG’s CroFab and ViperaTAB .. 159
 ESBATech’s ESBA105 .. 160
 FibroGen’s FG-3019 ... 160
 Genzyme’s GC1008 ... 161
 GlaxoSmithKline’s 656933 (Sb656933) 161
 Novartis’ Ilaris (canakinumab) ... 162
 Immune Globulin Preparations for Other Indications 163
10.2. Business Considerations: Antibodies and Immunotherapies for Other Indications .. 163

CHAPTER 11
EXPERT INTERVIEWS .. 165
11.1. Steven Glazer, MD; Senior Vice President, Development; BioInvent International ... 165
11.2. Josefin-Beate (Josi) Holz, MD, Chief Medical Officer & Eva-Lotta Allan, Chief Business Officer; Ablynx 171
11.3. David Y. Liu, PhD, Vice President, Research & William Hodder, Vice President, Business Development; FibroGen 183
11.4. Steve Pakola, MD; Chief Medical Officer; ThromboGenics 190
11.5. Andrea Pfeifer, PhD; Chief Executive Officer; AC Immune 194
11.6. Roger Sabbadini, PhD; Founder, Vice President, Chief Scientific Officer; Lpath ... 198
11.7. Walter Schmidt, PhD; Chief Executive Officer; AFFiRiS 204

REFERENCES .. 209

COMPANY INDEX WITH WEB ADDRESSES ... 219

TABLES
Table 2.1. FDA-Approved Drugs for Treatment of Alzheimer's Disease 9
Table 2.2. Selected Companies Developing Immunotherapies (Monoclonal Antibodies or Vaccines) for Treatment of Alzheimer's Disease 13
Table 3.1. FDA-Approved Drugs for Use as an Aid in Smoking Cessation 34
Table 3.2. Selected Companies Developing Vaccines for Treatment of Cocaine Addiction or Nicotine Addiction (Smoking Cessation) 37
Table 4.1. Selected Non-Opioid Analgesics ... 49
Table 4.2. Selected Opioid Analgesics .. 55
Table 4.3. Selected Companies Developing and/or Marketing Immunotherapies (Antibodies, Antibody-Derived Agents, or Vaccines) for Other Neurology Applications .. 60
Table 5.1. Selected Heart/Cardiovascular Drugs Including Lipid-Lowering Drugs and Drugs for Treatment of Hypertension ... 77
Table 5.2. Selected Companies Developing and/or Marketing Immunotherapies (Antibodies, Antibody-Derived Agents, or Vaccines) for Cardiovascular Diseases ... 96
Table 6.1. FDA-Approved Immune Globulin Intravenous (IGIV) Preparations and Their Indications ... 102
Table 6.2. FDA-Approved Rho(D) Immune Globulin and Immune Globulin Intravenous Preparations ... 104
Table 6.3. Current Non-Immune Globulin Therapies for Selected Hematology Indications ... 105
Table 6.4. Emerging Immunotherapies for Treatment of Hematology/Blood Disorders ... 109
Table 7.1. Current Pharmacological Therapies for Wet Age-Related Macular Degeneration .. 119
Table 7.2. Emerging Antibody-Based Therapies for Ophthalmic Diseases 124
Table 8.1. FDA-Approved Drugs for Prevention and Treatment of Osteoporosis ...130
Table 8.2. Emerging Antibodies and Antibody-Derived Therapies for Osteoporosis and Other Bone Metabolism Disorders ...135
Table 9.1. FDA-Approved Drugs for Treatment of Type 2 Diabetes143
Table 9.2. Emerging Monoclonal Antibodies for Treatment of Type 2 Diabetes147
Table 10.1. Emerging Antibodies, Antibody-Based Drugs, and Anti-inflammatory Drugs for Selected Other Indications ...153

FIGURES
Figure 11.1. Nanobody Formatting—A Major Advantage174
Figure 11.2. The Value of Formatting For Receptor Binding175
Table 2.2: Selected Companies Developing Immunotherapies (Monoclonal Antibodies or Vaccines) for Treatment of Alzheimer’s Disease (cont.)

<table>
<thead>
<tr>
<th>Company</th>
<th>Product/Technology</th>
<th>Status</th>
<th>Comments</th>
</tr>
</thead>
</table>
| ESBATech | Antibody fragments | In development | ESBATech is a spin-out of the University of Zurich and is focusing on development of human antibody fragments for therapeutic applications. In February 2008, researchers at ESBATech and the University of Zurich published a paper entitled “Antibody-based approaches in Alzheimer’s research: safety, pharmacokinetics, metabolism, and analytical tools.” This paper includes a discussion of the potential use of antibody fragments for treatment of Alzheimer’s disease. [Lightlen P, Mohajeri MH. J Neurochem. 2008;104:859–74.]
| Genentech (part of Roche) and AC Immune | Anti-Abeta (MABT5102A) | Phase I | Humanized monoclonal antibody that binds to amyloid beta (Abeta) For Alzheimer’s disease Generated using AC Immune’s supramolecular antigen technology |
| GlaxoSmithKline | GSK933776A (933776) | Phase I | Monoclonal antibody For Alzheimer’s disease |
| JANSSEN Alzheimer Immunotherapy (Part of Johnson & Johnson) and Pfizer (Formerly being developed by Elan and Wyeth) | Bapineuzumab (AAB-001) | Phase III | Humanized monoclonal antibody For mild to moderate Alzheimer’s disease Phase III - intravenous formulation Phase II - subcutaneous formulation |

Continued
Even though pharmacological therapies have been available to aid in smoking cessation, many people who try to quit are not successful. As previously mentioned, the CDC reports that 70% of US smokers report they want to quit. The CDC also reports that more than 40% of adult smokers try to quit smoking each year. However, as demonstrated by the continued high numbers of cigarette smokers, many of these attempts to quit are not successful.

3.2. Why Immunotherapies for Addiction?

The immunotherapies currently being developed for treatment of addiction are vaccines that stimulate the body to generate antibodies against the targeted drug. These antibodies bind to the drug molecule (such as cocaine or nicotine), creating a large molecule that cannot be transported across the blood-brain barrier. Thus, these immunotherapies block the pleasurable effect of the drug molecule. However, immunotherapies do not reduce cravings for the drug and do not treat the symptoms of withdrawal. As a result, immunotherapies (if successfully developed) are likely to be most effective when used in combination with other approaches (including psychosocial approaches) for treatment of addiction.

In theory, immunotherapies for treatment of addiction could be either vaccines or passive immunotherapies such as monoclonal antibodies. As discussed in the following section, the four immunotherapies in development today are all vaccines, or active immunotherapies, that stimulate the patient’s immune system to produce antibodies that target and bind to the drug. A potential advantage of vaccines is that they may generate longer-term protection. However, it is possible that booster injections may be required to maintain the vaccine’s effect. The following section (on companies developing immunotherapies for cocaine or nicotine addiction) discusses some of the available data on how long antibodies were present following injection.

Passive immunization with monoclonal antibodies offers the theoretical advantage of a faster response to the drug, and so it might be possible to use this approach for treatment of acute intoxication or overdose. However, antibodies administered via passive immunotherapy are not likely to last as long in the bloodstream as antibodies generated in response to a vaccine.

As discussed in the following section, all of the immunotherapies for treatment of addiction that are in clinical development today are
Table 6.4. Emerging Immunotherapies for Treatment of Hematology/Blood Disorders (cont.)

<table>
<thead>
<tr>
<th>Company</th>
<th>Product/Technology</th>
<th>Status</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Apitope Technology | ATX-iF8 program | Preclinical (as of 10/08) | Apitopes: Peptide vaccines to restore balance of the immune system; for treatment of autoimmune diseases and allergies
| | | | Apitopes to prevent Factor VIII inhibitor formation identified |
| | | | For hemophilia-A |
| LFB | Anti-Rhesus D Monoclonal Antibody | Phase I | For prevention of fetomaternal alloimmunization (mother-child Rhesus incompatibility)
| | | | Phase I being conducted in healthy volunteers |
| ThromboGenics | Anti-VPAC | Preclinical | Antibody against VPAC1 (Vasoactive Intestinal Peptide/Pituitary Adenylyl Cyclase-Activating Peptide Receptor 1)
| | | | VPAC is a receptor on the surface of megakaryocytes (bone marrow cells that produce platelets). Inhibiting VPAC promotes differentiation of megakaryocytes to form platelets.
| | | | For treatment of thrombocytopenia (low platelet counts), a side effect of chemotherapy |

Source: Sannes & Associates, Inc.

Alexion Pharmaceuticals’ Soliris (eculizumab)

Alexion Pharmaceuticals markets Soliris (eculizumab), which was approved by the FDA in March 2007 for treatment of patients with paroxysmal nocturnal hemoglobinuria (PNH) to reduce hemolysis. With this approval, Soliris became the first drug to be approved for treatment of PNH, a rare disorder that is discussed in Section 6.1. In June 2007, Soliris was approved in the European Union for treatment of patients with PNH.

Soliris is a terminal complement inhibitor. It is a monoclonal antibody that binds to the complement protein C5, preventing cleavage of this protein to form C5a and C5b. As discussed in Section 6.2, in patients with PNH, the red blood cells are hemolyzed (destroyed) by complement.
ESBATEch’s ESBA105

ESBATEch’s lead product candidate is a humanized single-chain (scFv) antibody fragment directed against tumor necrosis factor alpha (TNF alpha), called ESBA105. Much of the company’s development effort with ESBA105 is focused on ophthalmology indications, as discussed below. In addition, intra-articular administration of ESBA105 is being evaluated for treatment of patients with severely painful osteoarthritis of the knee (see Chapter 10).

TNF-alpha is a cytokine involved in the immune response. Multiple agents that block binding of TNF-alpha to its receptor are on the market and in development for treatment of rheumatoid arthritis and certain other autoimmune diseases. These are discussed in a separate, upcoming Insight Pharma Report titled *Immunotherapies That Suppress or Balance the Immune Response*. An agent that blocks TNF-alpha may also be useful for treatment of inflammatory conditions of the eye. ESBA105 is administered topically via eye drops and has been evaluated in a Phase I study in healthy volunteers. This study began in April 2008 and in September 2008, ESBATEch announced its successful completion.

ESBA105 is currently being evaluated for ophthalmic indications in two clinical trials. In February 2009, ESBATEch announced the start of a Phase Ib/Ila clinical study in patients undergoing cataract surgery. This is a randomized, double-blind, placebo-controlled, parallel-assignment study that is expected to include about 90 patients. Later in February 2009, ESBATEch announced the start of a Phase II study evaluating ESBA105 in patients with uveitis.

In addition, in March 2009, ESBATEch announced that ESBA105 had demonstrated efficacy in a preclinical study in a model for choroidal neovascularization (CNV). CNV occurs in patients with wet AMD and results in the formation of new blood vessels behind the retina that can bleed, leading to scarring and vision loss.

Genentech’s and Novartis’ Lucentis (ranibizumab)

Genentech, which is now part of Roche, developed Lucentis (ranibizumab). As mentioned, Lucentis is an antibody fragment that binds and inhibits VEGF and is FDA approved for treatment of wet AMD. Genentech licensed Lucentis to Novartis, which has worldwide rights outside the United States for this antibody.
Table 9.1. FDA-Approved Drugs for Treatment of Type 2 Diabetes (cont.)

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Brand Name</th>
<th>Company</th>
<th>Comment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>metformin and glyburide</td>
<td>Glucovance and generics</td>
<td>Bristol-Myers Squibb and generic companies</td>
<td>--</td>
</tr>
<tr>
<td>metformin and pioglitazone</td>
<td>Actoplus Met, Actoplus Met XR</td>
<td>Takeda</td>
<td>--</td>
</tr>
<tr>
<td>metformin and repaglinide</td>
<td>PrandiMet</td>
<td>Novo Nordisk</td>
<td>--</td>
</tr>
<tr>
<td>metformin and rosiglitazone</td>
<td>Avandamet and generic</td>
<td>GlaxoSmithKline and Teva Pharmaceutical</td>
<td>--</td>
</tr>
<tr>
<td>metformin and sitagliptin</td>
<td>Janumet</td>
<td>Merck & Co.</td>
<td>--</td>
</tr>
<tr>
<td>pioglitazone and glimepiride</td>
<td>Duetact</td>
<td>Takeda</td>
<td>--</td>
</tr>
<tr>
<td>rosiglitazone and glimepiride</td>
<td>Avandaryl</td>
<td>GlaxoSmithKline</td>
<td>--</td>
</tr>
</tbody>
</table>

(Note: Drugs in this table do not include the numerous insulins that are on the market.)

Source: Sannes & Associates, Inc.

9.2. Why Monoclonal Antibodies for Type 2 Diabetes?

Monoclonal antibodies can be used to bind and block the activity of a targeted molecule in the body that is involved in the disease process. For type 2 diabetes, two different molecules are being targeted by monoclonal antibodies that are in development: interleukin-1 beta (IL-1 beta) and glucagon receptor.

IL-1 is a pro-inflammatory cytokine that stimulates the immune response. There are two forms of IL-1: IL-1 alpha and IL-1 beta, which have similar activity and bind to interleukin-1 receptor. In 2001, the FDA approved Kineret (anakinra), a recombinant form of the interleukin-1 receptor antagonist (IL-1RA), a naturally occurring inhibitor that blocks the binding of IL-1 to its receptor.

Kineret is FDA approved for the treatment of rheumatoid arthritis and was developed by Amgen. In September 2008, Amgen licensed Kineret to Biovitrum (Sweden). While Amgen did not develop Kineret for treatment of type 2 diabetes, academic researchers at the University Hospital of Zurich, University of Zurich (Switzerland) and Steno Diabetes Center (Denmark) have evaluated Kineret in patients with type 2 diabetes. Amgen donated the Kineret used in this study. In 2007, these researchers published the results of a double-blind, parallel-group
Dr. Holz: Beyond the formatting advantage, there is potential for multiple routes of administration for Nanobodies. This differentiates them from monoclonal antibodies and other scaffolds. Most conventional antibodies are either given through the vein (intravenous route) or through the skin (subcutaneous route). But it is always by injection, which means that there is a needle attached to a syringe.

For our Nanobodies in initial clinical development (because we want to go as fast as possible into the clinic), we always consider the injection route.

Our anti-thrombotic Nanobody is administered via intravenous injection but can also be given subcutaneously in our second program, which is a little bit more convenient for patients. And, for our Nanobody program in the osteoporosis field, we have gone immediately into the subcutaneous form of administration.

In your mouth, in your throat, in your nose, and also in your lungs, you have many active proteins and enzymes that are designed to cut down other proteins that enter the nose or the mouth. This is a pretty hostile
Institute

Founded in 1992, Cambridge Healthtech Institute (CHI) strives to develop quality information resources that provide valuable new insights and competing points of view while offering balanced coverage of the latest developments in the life sciences industry. Basic research related to commercial implications is covered, with heavy emphasis placed on end-user insights into new products and technology as well as coverage of the strategy behind the business.

Cambridge Healthtech Institute (CHI)—www.chicorporate.com—is the preeminent life science network for leading researchers and business experts from top pharmaceutical, biotech, CROs, academia, and niche service providers. CHI offers a fully integrated life sciences portfolio of products, services, educational programs, analytical research reports, management consulting services, multi-media solutions, and publications including Bio-IT World magazine.

For a comprehensive listing and detailed information about our products and services, please continue reading below or visit our web site at www.chicorporate.com.

Cambridge Healthtech Institute Conferences (www.healthtech.com)

For the past 15 years, Cambridge Healthtech Institute (CHI) has developed more than 700 conferences, which have attracted over 60,000 attendees from around the world. CHI is the industry leader in offering quality programs that provide valuable new insights and competing points of view while offering balanced coverage of the latest developments in the life science industry. Leading researchers and business experts from top pharmaceutical, biotech, and academic organizations present their most current findings in a forum that features panel discussions and audience participation.

CHI’s Marketing Services (http://proservices.healthtech.com)

The Marketing Services group is an ideal solution for companies seeking assistance in all aspects of life sciences direct marketing. CHI’s Marketing Services continues to be chosen #1 over our competitors for one reason – We deliver results that impact the bottom-line with many services to choose from. Services include list rentals, direct marketing, product and service alerts, and mail piece designs.
Cambridge Meeting Planners (http://proservices.healthtech.com)

Cambridge Meeting Planners (CMP) has a highly professional, experienced team dedicated to providing you with the finest services to match any budget. With five meeting planners who combined have over 50 years of experience in the field, CMP has extensive working relationships with hotels and vendors guaranteeing you superior service with all of your contract negotiation needs.

CMP is available to manage all of your preplanning and onsite meeting needs, including site selection, contracting, audio visual/food and beverage selection, hiring/managing security and temps, etc. CMP is there for you whether you need help planning a reception for 1000 or a working dinner meeting for 20 professionals. CMP can manage your entire event from soup to nuts and make your vision a reality. Types of events include:

- Conferences
- Tradeshows
- User-group meetings
- Product launches
- Focus groups
- Client appreciation events
- Team building excursions
- Recreational and hospitality programs
- And many more. Please visit the web site for a more detailed list.

Cambridge Healthtech Associates (CHA) (www.chacorporate.com)

Cambridge Healthtech Associates (CHA) is the leading organizer and facilitator of biopharmaceutical collaboration. CHA reduces the costs of R&D by bringing together different companies to work cooperatively to evaluate novel technologies, assess vendors in emerging global markets and address other areas of shared concern. This is accomplished through short, six-month collaborative projects, market research surveys, roundtable summits, virtual meetings (via tele/web conference) and the Drug Safety Executive Council (an exclusive online community of industry leaders).

Cambridge Healthtech Media Group (www.chimediagroup.com)

Cambridge Healthtech Media Group delivers content to decision makers through its print, online, and electronic products designed to serve the life sciences community. The Media Group’s editors are at the pulse of the market and disseminate ground-breaking news, analysis, trends, and insights that shape the life science industry through a suite of published resources — Bio-IT World magazine—CHI’s flagship publication, topic-specific eNewsletters, and web sites.

Bio-IT World (www.bio-itworld.com)

Bio-IT World magazine—CHI’s flagship publication—publishes critical insights, analysis, and opinion on the enabling technologies propelling the spread of information and the passage of drug candidates through the drug discovery process. Bio-IT World’s focus is increasingly one that explores the tools and results of predictive biology, drug discovery, informatics, and personalized medicine as well as the strategic decisions made by companies in this area and the impact on the company’s performance.

A few key areas covered in-depth include: recent advances in whole genome analysis and
next-generation sequencing, data handling technologies, the vast potential of adaptive clinical
trials, in silico modeling, cheminformatics, electronic data capture, and much more. Please
visit www.bio-itworld.com to view more feature articles on the life sciences industry and to
subscribe.

eNewsletters

- **eCliniqua** (www.chimediagroup.com)
 Published 2x per month, eCliniqua provides authoritative news, views, and insights on
management challenges related to innovative clinical research management and
implementation processes and technology solutions. Specific topics covered include:
innovations in development planning and protocol design; new approaches to sponsor-CRO and sponsor-site relationships; novel patient recruitment and retention strategies and practices; project management; emerging and established electronic clinical trial technologies and standards; regulatory and drug safety insights; and other critical topics focusing on the clinical research enterprise.

- **Predictive Biomedicine** (www.chimediagroup.com)
 Published 2x/month, Predictive Biomedicine covers the development and use of
informatics and computational tools used to manage, present, and interpret experimen-
tal data as well as those used in modeling and bio-simulation. From data
management challenges to systems biology initiatives, Predictive Biomedicine will report
on industry's efforts to reduce dependence on trial and error and adopt more data-
driven predictive methods to drive drug discovery and developments.

- **Bio-IT World Weekly Update** (www.bio-itworld.com)
 Published weekly, Bio-IT World Weekly Update is a summary of the week's latest news, industry highlights and trends, product reviews, upcoming events, and key stories from Bio-IT World magazine and its companion web site, www.bio-itworld.com.

eCliniqua (www.chimediagroup.com)

Published 2x per month, eCliniqua provides authoritative news, views, and insights on
management challenges related to innovative clinical research management and
implementation processes and technology solutions. Specific topics covered include:
innovations in development planning and protocol design; new approaches to sponsor-CRO and sponsor-site relationships; novel patient recruitment and retention strategies and practices; project management; emerging and established electronic clinical trial technologies and standards; and other critical topics focusing on the clinical research enterprise.

Pharma Services News (www.chimediagroup.com)

Published 2x/month, Pharma Services News is written to assist industry users in identifying, locating, and implementing pharma services across the four phases of drug discovery being target identification, target validation, high-throughput screening, and lead optimization, and into pre-clinical evaluation.
Bio-IT World Weekly Update (www.bio-itworld.com)

Published weekly, Bio-IT World Weekly Update is a summary of the week’s latest news, industry highlights and trends, product reviews, upcoming events, and key stories from Bio-IT World magazine and its companion web site, www.bio-itworld.com

Lead Generation Programs & Custom Solution Packages (www.chimediagroup.com)

A variety of custom publishing, multi-media solutions, and lead-generation programs can be used to convey your company’s message to a core life science audience of qualified scientists, technology professionals, executive managers, clinical professionals in pharma, biotech, academia, and niche service provider companies. The media group team can help you create a comprehensive media package—targeting specific demographics—and incorporating your message within the published resources that our audiences trust. Programs may include Microsites, white papers, webcasts, podcasts, custom surveys, special mailings, and other solution packages to meet your business needs.

To request information on the Lead Generation Programs, Custom Solution Packages, or to develop a comprehensive multi-media package to reach a target audience, contact Marketing_CHMG@healthtech.com

Contact Us:
Cambridge Healthtech Institute
250 First Avenue, Suite 300
Needham, MA 02494
Phone: 781-972-5400
Toll-Free: 888-999-6288
Fax: 781-972-5425
Email: chi@healthtech.com
Web: www.chicorporate.com

Your Life Science Network
Timely, Authoritative, Concise

Your one-stop source for analysis of the technologies, markets, and strategic issues driving R&D productivity

Insight Pharma Reports is a division of Cambridge Healthtech Institute