Systems Biology: A Disruptive Technology

By Ken Rubenstein, PhD

May 2008

This report focuses on the current and future applications of Systems Biology in drug discovery, specifically in pinpointing optimal individual targets, and combinations of targets, to overcome metabolic pathway redundancies, leading to efficacious and safe products. Topics covered include:

• Application successes at AstraZeneca, Pfizer, and J&J
 • Landscape of the Systems Biology marketplace and its future
 • Implications of innovative predictive modeling and global transcription epigenetics analysis
 • Review of 18 Systems Biology company business models
 • How SB will enable pharmacological progress in biologically complex “money” diseases
 • Projections on the future for Systems Biology in leukemia, Alzheimer’s, and Huntington’s diseases.

Continued on next page
Systems biology (SB) is challenging the existing dominant drug discovery approaches and on track to becoming a classic disruptive technology. This report describes examples of SB successes in big pharma and current SB applications as well as the radically new concepts emerging from basic SB research.

The report provides a survey on the origins of SB and the varying definitions in common use and then moves to a review of the current bioanalytical- and bioinformatics-based technologies for making sense of omic’s data through enabling pathway and network analysis. Pathway analysis, cell modeling, and disease modeling technologies today dominate the bioinformatics branch of systems biology. Database-mediated pathway analysis studies, which are particularly popular today, help to discover meaning in global biological data for drug discovery and diagnostics. As examples, systems biology approaches played a key role in understanding AstraZeneca’s Iressa (gefitinib), liver abnormalities were identified by Pfizer, and Johnson & Johnson identified a kinase inhibitor mechanism. Next, the report provides an overview of the recent explosion of academic SB activity and implications for highly novel approaches to drug discovery and diagnostics not envisioned today. Examples include nanosystems studies to construct a predictive model for transcription control, ChIP-on-chip technology for global transcription factor identification, and methylation-specific polymerase chain reaction (PCR) for global DNA methylation detection as an entry point to epigenetics.

Systems Biology: A Disruptive Technology provides an analysis of the commercial activities of 18 small systems biology companies reviewed in the context of the nature and dynamics of the systems biology market: the business models, deals, scope, and prospects. As examples, commercial databases and software programs from companies such as Ingenuity Systems (Redwood City, CA), GeneGo (St. Joseph, MI), and Ariadne Genomics (Rockville, MD) provide enhanced usability and comprehensiveness. Genstruct’s Knowledge Assembly platform enables “knowledge-driven systems biology;” Gene Network Sciences’ (Cambridge, MA) REFS (Reverse Engineering and Forward Simulation) systems permit reverse engineering and hypothesis generation from omic data; and Entelos’ (Foster City, CA) PhysioLab biosimulation models, which incorporate both molecular and higher-order disease data, permit construction of “virtual patients.”

Systems Biology: A Disruptive Technology concludes with a discussion and speculation as to the future for SB, supported by interviews with scientists and managers deeply engaged in this space. This analysis explains how and why pharma and diagnostics industries will benefit from advances in SB by leading to highly novel approaches for application to drug discovery and diagnostics discovery and development.

About the Author: Ken Rubenstein, PhD, a biochemist and molecular biologist, received his PhD at the University of Wisconsin and postdoctoral training at the University of Pennsylvania School of Medicine. He was a key innovator and research manager for Syva Company, the diagnostics branch of Syntex Corporation. During his 13 years with Syva, Dr. Rubenstein became vice president, scientific affairs, a function that included strategic planning. Since 1983, he has served as a technology and marketing consultant to biomedical companies and an industry analyst, with more than 40 published studies to his credit.
Tables and Figures cont.

Respondents by Sector
Respondents by Position
Respondents by Stage of Work
Use of Systems Biology in R&D Projects
Areas of Systems Biology Involvement
Companies’ Views Toward Systems Biology

Means by Which Systems Biology Effort Is Conducted
Vendor Emphasis in Outsourced Systems Biology Efforts
Expectations for Fiscal 2008 Systems Biology Budget
Expectations for Systems Biology Budget over the Next 3 Years
Estimation of 2008 Systems Biology Budget

Table of Contents

Chapter 1: Introduction
1.1. Scope and Content of This Report
1.2. Historical Perspective
1.3. Defining Systems Biology

Chapter 2: Technological Aspects of Systems Biology
2.1. Bioanalytical Technologies
 Academic Perspective: Institute for Systems Biology
 Commercial Perspective: BG Medicine
2.2. Regulatory Mechanisms and Organization
 DNA-Protein Binding: ChIP-on-Chip Analysis
 DNA Methylation
 MicroRNAs
2.3. Bioinformatics Technologies
 Pathway Analysis
 Databases
 Commercial Software Systems
 Cell and Disease Modeling
 Genstruct
 Entelos
 Gene Network Sciences
2.4. Summary

Chapter 3: Basic Research in Systems Biology
3.1. Network-Based Models and Simulations
 Types of Biological Networks
 Transcriptomic/Genetic Variation Approach
 Combination Drug Therapy
3.2. Protein Networks
 Yeast Two-Hybrid and Related Technologies
 Metabolic Interaction Networks
 Databases
 Systems Biology Research Approaches
3.3. An Emerging Paradigm for Viewing Health and Disease
 Diseaseome
 Genotyping/Gene Expression Combinations in Biological Network Construction
 Implications of Systems Biology for Clinical Medicine
 Systems Biology Approach for Cancer Research

Chapter 4: Applied Research in Systems Biology
4.1. Impacts of Systems Biology on Specific Disease Areas
 Cancer
 Acceptance of Systems Biology by Big Pharma
 Network-Based Cancer Research
 Neurological Diseases
 Cardiovascular Diseases
 Metabolic Disorders

Chapter 5: Market Dynamics
5.1. Approaches of Small Company Players
 Ariadne Genomics
 BG Medicine
 BioSeek
 Connexios
 Entelos
 Gene Network Sciences
 GeneGo
 Genetics Squared
 Genomatica
 Genstruct
 Ingenuity Systems
 Optimata
 Physiomics
 Protein Lounge
5.2. Approaches of Selected Drug Discovery and Development Organizations
 Cellicon Biotechnologies
 CombinatoRx
 e-Therapeutics
 Merck
 Merrimack Pharmaceuticals
 Pfizer
 SU Biomedicine
5.3. Systems Biology Deals
5.4. Insight Pharma Reports Systems Biology Survey: Comments and Results

Chapter 6: Conclusions and Future Prospects
6.1. Challenges for Systems Biology in Drug Discovery
6.2. Possible Solutions to Advancing Medical and Pharmacological Knowledge via Systems Biology
6.3. Systems Biology as a Disruptive Technology
6.4. Future Prospects

Chapter 7: Expert Interviews
David de Graaf, PhD, Director of Systems Biology, Pfizer, Research Technology Center, Cambridge, MA
Brian Edmonds, PhD, Research Advisor, Integrative Biology and Global External Research, Lilly Research Laboratories, Indianapolis, IN
Colin Hill, CEO, President, Chairman, and Co-Founder, Gene Network Sciences, Cambridge, MA
David Lester, PhD, President and Founder, ITHW, Inc., Morristown, NJ
Stephen Naylor, PhD, Chairman, CEO, and Co-Founder, Predictive Physiology and Medicine (PPM), Bloomington, IN

References
Company Index with Web Addresses

InsightPharmaReports.com
Epigenetics: Technologies, Applications, and the Commercial Landscape

Epigenetics is one of the fastest-growing areas of the biological sciences. It’s also a budding industry. This report offers in-depth analysis of:

- The definition, history, and current status of epigenetics
- Current and potential commercial applications
- An epigenetic approach to cancer etiology
- The epigenetics of noncancerous diseases
- DNA methylation and histone modifications as biomarkers
- The companies involved and their products
- Epigenetic therapeutics: demethylating agents, histone modifications, and combinations
- The drivers of the epigenetics industry, plus recent major industry deals and patent applications
- Results of a quantitative online survey of individuals involved in epigenetics R&D

This report focuses on the 2 major types of epigenetic control factors:

- DNA methylation patterns formed by the presence of methyl molecules (-CH3) attached to CpG dinucleotides along the entire length of the DNA double helix
- Various covalent modifications to the histone proteins around which the DNA helix is wound

Epigenetics: Technologies, Applications, and the Commercial Landscape is a valuable tool for anyone involved in epigenetics R&D, portfolio management, and commercialization of diagnostics and therapeutics.

To view a table of contents and executive summary, please visit www.InsightPharmaReports.com

Related Report

Systems Biology: A Disruptive Technology

Pricing

<table>
<thead>
<tr>
<th>Product</th>
<th>Single-Site/Operational Unit License*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Biology: A Disruptive Technology — May 2008 (156 pages)</td>
<td>$2,995.00</td>
</tr>
<tr>
<td>Epigenetics — February 2008 (130 pages)</td>
<td>$2,995.00</td>
</tr>
</tbody>
</table>

*Single-site licenses are multi-user, searchable, cut-and-paste ready PDFs

Call for global license pricing; contact David Cunningham at 781-972-5472 or cunningham@healthtech.com

Choose a payment option:

1. ☐ Enclosed is a check order payable to Cambridge Healthtech Publishing, in U.S. currency. (In Massachusetts, add 5% sales tax.)
2. ☐ Purchase order number ___________________________

3. Credit card: ☐ Amex ☐ Visa ☐ MC ☐ Diners Club #: __________________________ Exp. Date: ______ Sec. Code: ______

Cardholder: __________________________ Signature: __________________________

☐ Mr. ☐ Ms. ☐ Mrs. ☐ Dr. ☐ First Name: __________________________ Last Name: __________________________

Job Title: __________________________ Div./Dept. __________________________ Company: __________________________

Address (please include Mail Stop, Room or Bldg. #): __________________________

City/State/Postal Code: __________________________ Country: __________________________

Telephone: __________________________ Fax: __________________________ E-Mail: __________________________

Please refer to the key code below